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The leading term of the high-temperature quantum corrections to the scaled 
particle theory of the hard sphere fluid have been obtained. This provides 
approximate corrections to the pressure, surface tension, and reversible 
work to create a spherical cavity W(r) of the quantum mechanical hard 
sphere fluid. A number of exact identities valid for the classical hard sphere 
fluid are shown to apply also to the quantum mechanical hard sphere fluid, 
including the fluctuation relation between W(r) and the probability of 
finding a cavity of radius at least r. 

K E Y  W O R D S  : Fluctuation relation ; surface tension ; equation of state ; 
quantum corrections ; hard sphere fluid ; scaled particle theory. 

1. INTRODUCTION 

Unlike molecules with continuously differentiable intermolecular potential, 
the leading quantum mechanical correction in the high temperature for the 
free energy and pressure of a hard sphere (HS) fluid is linear and not quadratic 
in the thermal wavelength. In particular, if a is the HS diameter and p the 
number density, Hemmer m and JancovicF 2'3~ showed that the pressure of 
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the quantum mechanical HS fluid p can be written (/3 --- 1/kT) 

P = Pc + )~a Opc/Oa (1) 

neglecting higher order terms in the (dimensionless) scaled thermal wave- 
length 

h = h[2.2112a(2~rmkT)Z12]-i 

with Pc the pressure of the corresponding classical HS fluid at density p and 
diameter a. (In general, the subscript c on the symbol for any physical entity 
denotes the physical entity of the corresponding classical HS fluid). Since 

~3Polo = 1 + 4~gc(a) (2) 

where ~ = rrpaa/6 and go(a) = g~(a, p) is the classical contact radial distribu- 
tion function, one can write (1) 

/3p/p = 1 + 4~Tg~(a) + 12~)~gc(a) + 4~lha(~gJ~a)(a) (3) 

again neglecting higher order terms in )t. As yet no exact limiting relation is 
available between the quantum and classical properties, similar to (1) or (3), 
for the surface tension ~o(a) or the reversible work to form a spherical cavity 
f~(r) of radius r, W(r)  = W(r, a, p), of a HS fluid. Even if such expressions 
were to be available, they, as well as (1) or (3), are simply schematics for 
providing approximate expressions to the properties of the quantal HS fluid 
since the properties of the corresponding classical HS fluid are known only 
approximately. 

In this paper we provide approximate expressions for the pressure, 
surface tension, and W(r)  of the quantal HS fluid by a straightforward 
extension of the simple scaled particle (SP) theory. (4) The SP theory focuses 
attention on the conditional probability of finding a spherical cavity f2(r) 
in the HS fluid, G(r), which is in turn related to the probability of finding a 
spherical cavity of at least radius r, po(r), by (4) 

- dpo(r)/dr = po47rr2pG(r) (4) 

Using (1), we shall obtain a simultaneous approximation for p, W(r), and cr o 
by a suitable approximation for G(r) rather than by directly substituting an 
approximate g~(a) into (1), etc. In order to accomplish this, we shall have to 
relate p to G(a) and po(r) to W(r).  The latter step we carry out in the next 
section. In Section 3 we introduce our approximate G(r) and deduce the 
approximate p, c~o, and W(r).  Finally, in the last section we discuss our results 
by comparing the low-density expansion of our results with available theory. 

In the classical scaled particle theory the relation between the pressure 
p and Go(a) is obtained, by virtue of (2), from the fact that (4~ 

Go(a) = go(a) (5) 
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a relation which no longer holds for the quantal HS fluid. Instead we will 
show below that 

fip/p = 1 + 471(1 + 3t)6(a) (6) 

up to linear terms in I. To show this, G(a) is only to be expanded for small I 
keeping only the first-order term in t,  that is, 

a(a) = at(a) + )t OGc(a)/Oa (7) 

and substituted in (3) with (5). 

2. THE REVERSIBLE WORK W(r) 

In this section we shall demonstrate first that the classical fluid holds also 
for a corresponding quantum mechanical fluid. Specifically we will show that 

po(r) = exp[-/3W(r)]  (8) 

where W(r) is the quantum mechanical reversible work to create a spherical 
cavity (a region devoid of molecular centers) fl(r) in the quantum mechanical 
fluid. To prove (8), we will employ de Boer's treatment (Ref. 5, p. 337) of the 
canonical ensemble. The Slater sum for N molecules in a volume V is 

WN.v(r~ ..... rN) = N!  (12v/2a) au ~ [exp(--fiE}N'V')IIW,(N'V~[2 (9) 
i 

where E} N,v~ and ~F} N'v~ are the ith eigenvalue and eigenstate of a complete 
eigenset. The desired probability po(r) of finding a spherical cavity f2(r) of 
radius r not containing any molecule center in f~(r) is 

po(r) = fv-~,r> WN,v(rl,..., rN) dr N (10) 

fv WN,V(rl ..... rN) dr N 

with dr N = dr1 -.. drn. Introducing the Ursell functions U~,v(rl,..., r,) defined 
by 

Wl.v(r0 = Ul,v(rD, W2,v(rl, r2) = U2,v(rl, r2) + Ul,v(rl)Ul.v(r2) 
(11) 

etc., we can write 

fv Wmv(rl,..., rN) dr N = S ~ I  azm~(V)/m, ! 
(12) 

fv WN,v(rl,..., ru) dr n = S1--- [ a{~,(V, f2)/m~ l 
* - ~ 2  l 

where the summation S must be carried out over all possible divisions of the 
N molecules into ml groups of one, m2 groups of  two ..... m~ groups of 1, etc., 
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molecules, with ~ lm~ = N and 

a~(V) ---- (1!)-~ fv U~.~(r~,..., r,) dr~ 

a~(V, ~) =- ( l ! ) - l  f U,,v(rl .... ,r,)dfl  
v v  

where V is the arbitrary volume containing the N molecules. 

find 

(13) 

In the thermodynamic limit (N--+ 0% V-+ ~ ,  and N/V  = p, finite) we 

with the limiting form of the a~ 

az(V) = Vbz and 

where 

a z ( V -  Q) = ( V -  ~)bz 

(14) 

bL : lim ( 1 / V l ! ) ]  U,,v(rl,..., rz) dr ~ (15) 
vv 

The canonical partition function can be expressed as 

Qmv = S ~-~ (Vbl)ml/m,! (16) 
~;Imz=N 

with the usual canonical definition of the Helmholtz free energy F. Comparing 
(14) and (16), we can rewrite (14) as 

po(r) = e x p [ - f l F ( V -  ~) + flF(V)] (17) 

where F(V  - ~) - F(V) is the reversible work W(r) to create the spherical 
cavity O(r). Thus the validity of (8) is established. 

Introducing (8) into (4), we can write 

fl dW(r) = pG(r)4rrr z dr (18) 

The macroscopic meaning (4) of  dW(r) as the reversible work to increase the 
cavity from radius r to r + dr allows us to break dW(r) into a bulk term 
p dv (dr = 4~r 2 dr) and a surface contribution a(r) dS (dS = 8~rr dr), 

fl dW(r) = tip dv + fla(r) dS (19) 

The quantal surface tension of the HS fluid ~(r) against a spherical cavity of 
radius r is defined by (19). The usual surface tension e0(a) of the quantum HS 
fluid follows from ~(r) in the limit as r --+ ~ ,  i.e., when the cavity becomes an 
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infinite flat surface. Substituting (19) into (18) allows us to relate G(r) to p 
and a(r), 

G(r) = flp/p + 2fl~(r)/pr (20) 

In  the remaining par t  o f  this section we draw at tent ion to certain exact 
relat ions satisfied by G(r) for  r <<. a/2 which are identical to those satisfied 
by Go(r). We have the following exact condit ions on G(r):  

G(r) = Gc(r) = (1 - 47rr2p/3) -1 for  r <~ a/2 

and 

(aG/ar)T= al= = 6,/[a(1 - ,/)21-1 

(21) 

(22) 

(92G/Or2),=~/2 = 24~[a2(1 _ ,/)2]-1 + 72,/2[a2(1 _ ,/)3]-1 

_ 48,/G(a)[a2(1 _ 7/)]-1 (23) 

These equalities can be obtained directly f rom (10) as in the case of  the 
classical SP theory. We multiply the integrand of  the numera to r  in (10) by 
]--IJ [1 - E ' ( R  - rj)] and extend its limit o f  integrat ion f rom V - f2(r) to V, 
to obtain 

po(r) = 1 - ~ J f v  E ' ( R  - rj)WN,v(rl .... , r~) dr n 

fv W~,v(rl  ..... rN) dr ~ 

+ ~ ,  fv E ' ( R  - r j )E ' (R  - rk)Wu.v(R1 ..... rN) dr N (24) 

,.k fv WN,v(rl ,..., rN) dr N 

where E ' ( R  - rj) is unity when t h e j t h  HS molecule center is inside a sphere 
of  radius rj located at  R and is zero otherwise. Thus  only the first and second 
terms in (24) do not  vanish for  r < a/2, since then no two particle centers 
can simultaneously be accommoda ted  on the cavity boundary.  Thus.  

po(r) = 1 - p~rr  3 (25) 

as long as r < a/2, which together  with (4) yields (21). The  other  two relat ions 
are obta ined directly f rom (24) by evaluating the second and third derivatives 
at r = a/2 (of  Ref. 4). 

In  order  to proceed further,  we must  make  assumptions  abou t  the 
behavior  of  G(r) between r = a/2 and r = a ;  this we do in the next section. 

3. T H E  BASIC A P P R O X I M A T I O N  FOR G(r) 

We have previously shown (6) that  a formal  expression for  G(r) for  r >1 a/2 
which is not  inconsistent with (20)-(23) is provided by the fo rm 

G(r) = flp/p + 2flaoa/pr + fl3/pr 2 
+ [(2r/a) - a]2E(Zr - a)F/(r/a)",  n >/ 2 (26) 
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where E(x)  = 1 or  0 according as x > 0 or x < 0; p, o0 3 and P are suitable 
functions o f  aap; and n is an adjustable parameter.  Actually p will be the 
pressure, ~0 the surface tension, etc. in the SP type approximation.  The first 
three terms in (26) account  for the correct macroscopic behavior (4) and the 
last term is introduced to take account  o f  the microscopic behavior. (6) For  
convenience we can rewrite (26) as 

G(r) = P + Z / r  + Air  2 + [(2r/a) -- 112E(2r - a)r/(r /a)" ,  n >/ 2 (27) 

with the abbreviations 

P = [3p/p, X = 2~o/p ,  .A = ~8/p 

P, Z, A, and P represent four functions o f  pa a which have to be determined 
using the four conditions (6) and (21)-(23), namely 

G(a) = P + Z + A + r = ( P -  1)/4~7(1 + 3A) 
G(a/2) = P + 2Z + 4A = (1 - r/) -1 

(OG/ea)(a/2) = 2X + 8A = - 3 n / ( 1  - ,7) ~ (28) 

82Goa 2 ( 2 ) = 2 ~ + 1 2 A  +217 

3~7 9~7 ~ 3[2G(a) 
- (1  - ~/)' + (1  - ~ ) a  (1  - ~ ) ( 1  + 32,)  

= 21-"  (n >/ 2) 

The equations (28) are valid to linear terms in ~ only, so that  the simul- 
taneous solution o f  (28) can be written 

P = Pc + 3hPx, Z = Zc + 3tZ~, A = A c + 3tA~, 
P = I?c + 3112~ (29) 

where the entities with subscript c are the classical ones and those with 
subscript I are the first-order high-temperature quan tum mechanical  correc- 
t ion divided by 3t. After straightforward algebra we find 

Pc = [1 + 57/~ + 8 ~  2 + (5~ - 1)~alD-~0?, ~) 
P ~  = ~ (1  - ~ )~ (1  - ~ + ~ )  ( 3 0 )  

x [4 + (6 + 14~)'q + (2~' - 9)V 2 + (2~ r - 1),q3]O-2(,q,/~) 

X~, = -V(1 - -q)2(1 - ~ + Vg) (31) 
x [4 + (6 + 14~)~/ + (2~ - 9)~ 2 + (2~ - 1)~a]D-2(~7, g) 

A, = l-q2[1 + (3~ -- 1)~/]D-1(~, ~) 
~ = ~ ( 1  - ~ )~ (1  - ~ + ~g) 

x [4 + (6 + 14~),/ + (2~ - 9)~ ~ + (2~ - 1)~alD-~(r~, ~) (32) 
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I'c = -�88 + 7/)D-1(~, ~) 
lPa =-�88 - 7) 2 (33) 

x [8 + (40~ - 8)~/ + 12~*/2 + */a + (2~ - 1)*/41D-20/, 0 

where 

D(*/, ~) = (1 - */)211 + (5~ - 2)~/ + ( - 2 ~  + 1)*/=1 

F rom  (28), writing G(a) = Go(a) + 3;~Gz(a), we have, using (30)-(33), 

Gc(a) = [4 + (20~ - 6)*/ + (3 - 4~)*/2 + (2~ - 1)*/S]h-X(~/, ~) 
Ga(a) = ~(16 -- 22~) - */2(34 + 64~ + 86~ 2) (34) 

+ (21 -- 66~ - 62~2),/a + ( - 2  + 7~ - 692)~ ' 
+ (1 - 4~ - 4~2)*/s 

Finally f rom (27) and (19) we obtain on integration the reversible work for 
forming t he  cavity ~)(r), 

f lW(a) = ~rrapP + 2~rpr2Z + 4rrprA + 4zrpT(r ) (35) 

with 

~,(r) = P f ]  [(2r/a) - 112E(2r - a)a" dr/r "-2 

4. D I S C U S S I O N  

Equations (30)-(35) provide ths sought-for leading terms of  the high- 
temperature quantum mechanical correction to the SP theory of  the HS 
fluid. We now have a simultaneous set of  approximate relations for the 
pressure, surface tension, and reversible work of  cavity format ion which 
contain a single undetermined parameter  n or ~ = 21-".  To  assess the 
approximations made for  the quantal  corrections for the pressure we can 
compare  the first few terms of  the */expansion of  Pa given by (30) with that  
obtained by substituting Go(a) = go(a) given by (34) into (3). We find 

Pal*~ = 4 + 20,1 + (57 - 18~)*/2 + .-. [Eqs. (3) and (34)] (36) 

Pa/~ = 4 + (26 - 22~)~ + (81 - 222~ + 134~2)*/2 [Eq. (30)1 (37) 

The second terms of  (36) and (37) become identical for  ~ = 3/11 or n ~_ 2.84. 
This also agrees with the leading term of  the high-temperature quantum 
correction to the second virial coefficient of  the HS fluid [Eqs. (40) and (41) 
in Ref. 3 and further references therein]. 

Finally, al though there is no available exact expansion to compare  ZA 
from (31), we should note that  P~/Z~ = - 1. 
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